柔性电子的崛起是当下电子显示产业大趋势,柔性显示器、柔性照明、柔性太阳能电池、柔性传感器等产品正在加速从实验室走向市场。在这产业趋势之下,具有可挠性、高光穿透度、高导电度的软性透明导电膜是许多柔性光电产品的基础。因此,柔性透明导电膜将会成为柔性光电产品的战略性材料。
本文从透明导电膜的特性浅析具潜力的柔性透明导电膜技术,阐述各技术发展现况,并从材料特性、量产技术与商品产业化进展分析各种技术的发展趋势。期盼在柔性电子崛起之际,产业能够在材料、制程、设备有所布局,掌握柔性电子的庞大商机。
透明导电膜为光电产品基础
光电产品都需要光的穿透与电的传导,因此透明导电膜是光电产品的基础,平面显示器、触控面板、太阳能电池、电子纸、OLED照明等光电产品都须要用到透明导电膜。
「透明度」与「导电度」在物理上是两个互相掣肘的特性,「透明度」代表可见光可以穿透介质的多寡,而「导电度」代表介质传导载子(Carrier,包括电子与电洞)的多寡,与载子浓度有关。
在光学性质上,载子可视为处于一种电浆状态,与光的交互作用很强,当入射光的频率小于材料载子之电浆频率(Plasma Frequency)时,入射光会被反射,因此,材料的载子电浆频率在光谱的位置是可见光波段(380nm~ 760nm)是否能够穿透的决定因素。
一般金属薄膜的电浆频率在紫外光区,所以可见光无法穿透金属,这是金属在可见光区呈现不透明光学性质的原因,而金属氧化物的电浆频率落在红外光区,因此可见光区的光线可以透过金属氧化物,呈现透明状态。
但是,金属氧化物能隙(Energy Band Gap)太大,载子的浓度有限,导致金属氧化物的导电度很差。从材料的物理特性来看,「透明度」与「导电度」是难以两全的特性,开发一个同时具有高导电度与高光穿透率的材料相对困难。
降低金属材料厚度是增加光线穿透度的一个方法,惟金属薄膜厚度太薄,加工不易,例如以蒸镀方式成膜会形成岛状不连续的生长;另一方面也因为膜厚较薄,在空气中容易有氧化的现象产生,造成电阻值剧变,薄膜稳定性差,不利于后续加工应用。
提升金属氧化物的载子浓度以增加其导电度是透明导电膜的另一个方向。氧化物材料稳定,薄膜成膜性佳。可以利用掺杂(Doping)或是制造缺陷增加载子的浓度来提高导电度,是透明导电膜的理想材料。
如掺杂的氧化锡、氧化锌等都具有高透明、高导电的特性,其中又以氧化铟锡(Indium Tin Oxide, ITO)应用最为广泛。ITO导电度佳,可见光透光率高,同时成膜技术与后续蚀刻图案化制程都成熟可靠,是目前透明导电膜主要的材料。
ITO透明导电膜虽然应用非常广泛,但ITO属于脆性的陶瓷材料,容易受力脆裂。
从柔性电子对可挠性的功能需求来看,受力弯曲碎裂的特性使ITO在柔性电子组件应用上碰到瓶颈,具有可挠特性,取代ITO透明导电膜的产品必是未来柔性光电产品的基础材料,是柔性光电产品的战略物资。
预计取代ITO的透明导电膜市场到2022年时,将超过百亿美元。
如此庞大的市场规模主要来自柔性触控、柔性显示器、柔性太阳能电池与其他柔性电子组件在未来几年蓬勃发展,造成市场对柔性透明导电膜需求的结果。
虽然学理上一种材料同时具有高光穿透率、高导电率与可挠曲特性比较困难,但透过材料设计如金属薄膜、氧化物/薄金属/氧化物(Dielectric/thin Metal/Dielectric, DMD)复合材料结构、 掺杂具共轭键的有机导电高分子(Organic Conductive Polymer);具导电性的导电碳材如石墨烯(Graphene)、奈米碳管(Carbon Nanotube, CNT);或是设计肉眼看不到网格的结构如金属网格( Metal Mesh)、金属网络(Metal Web),都可制成软性透明导电膜。
柔性透明导电膜技术发展三大趋势
综观以上几种柔性透明导电膜技术发展,在可挠、光穿透、导电三大特性都有一定的开发成果,以下就从材料特性、量产制程、技术成熟度探讨其未来发展。
透明导电材料特性
导电度与光穿透度是柔性透明导电膜最重要的光电特性,高导电度下仍然能维持高光穿透度是产品发展的趋势。
为比较前述几种柔性透明导电膜技术,笔者以近几年各研究单位发表的面电阻与光穿透度成果来评价各种柔性透明导电膜技术,如图所示。
以面电阻与光穿透度来做评价各种软性透明导电膜技术
由上图可以发现,若以光穿透度大于80%为规格,在电阻大于100Ω/sq,上述各技术都能达到需求;但是到100Ω/sq以下时,石墨烯与奈米碳管就必须以真空法成长,再以转移技术成膜方能达到需求。
导电高分子与金属网格、金属网络可以达到此规格,而10Ω/sq以下,就只有金属网格与金属网络可以符合。其中奈米银线网络在100Ω/sq以下,甚至更低都能显现出优异的特性,这是由于银的导电特性极佳,少量的奈米银线即可达到低电阻与高穿透度的光电特性。
量产制程
量产制程的复杂度与软性透明导电膜的成本息息相关,上述几个柔性透明导电膜技术的量产制程解析如表1中所示,薄金属膜与氧化物/金属薄膜/氧化物都是真空镀膜制程,设备与制造成本最高。
奈米碳管、石墨烯的干式转移制程特殊,须要开发新的设备。蚀刻法的金属网格虽然制程复杂,曝光、显影、蚀刻、剥膜的黄光设备昂贵,但是制造技术成熟,铜网格透明导电膜目前已经量产应用到触控面板产业。
印刷法的金属网格将黄光图案化的制程以印刷来取代,预计可以再简化图案化设备投资,但是须增加低温烧结的制程与设备。自序组装的金属网络又省略图案化制程,其制造成本又比印刷金属网格简单。
涂布型奈米碳管涂布成膜后须做掺杂处理,石墨烯在氧化石墨烯涂布成膜后须还原处理,设备与制造成本应该与自序组装的金属网络相近。奈米线搭接的金属网络与导电高分子利用涂布成膜设备即可制造生产,是设备与制造成本最具竞争力的技术。
商品产业化进展
新技术的产业化是需要经过材料开发、制程开发、量产开发的流程。这过程中「量产开发」是一个重要的关键,量产开发牵涉到材料、制程与设备的整合,也是新技术商品化的重要关键。
铜金属网格的触控面板已经上市,是所有柔性透明导电膜技术中发展最快的技术;奈米银线触控面板在许多专业显示器展览有多家专业触控面板厂展示,也接近商品产业化。
导电高分子透明导电膜虽有多家膜厂展示产品,但实际应用仍在开发模索中。以印刷、自组装制程之金属网络在材料与制程部份已有些进展,相关量产制程与设备则仍开发中。石墨烯在墨水材料与制程技术上尚处于开发阶段。
各种软性透明导电膜目前商品产业化之进展
从材料特性、量产制程与技术成熟度来看,奈米银线透明导电膜最具竞争力。在光电特性上,横跨数Ω/sq到百Ω/sq范围都有优异的光穿透度;低成本涂布成膜制程,加上从奈米银线、墨水、柔性透明导电膜材到触控面板应用的产业链完整,唯一有待加强的是设备与制程的整合。
奈米银线墨水是低黏度高长径比的特殊墨水,涂布成膜时均匀度不易控制,针对奈米银线导电网络开发特殊的涂布设备,是打开奈米银线软性透明导电膜生产瓶颈的一个关键。
光电商品由硬到软,掌握关键性材料为发展契机
从1990年代开始以溅镀方式制作透明导电膜,ITO便是透明导电膜的代名词,然而、光电产品由小到大、由硬到软的趋势使ITO透明导电膜的特性逐渐无法满足未来光电产品需求。
柔性透明导电膜在新材料发展下,奈米碳管、石墨烯、导电高分子应用都有一定的进展,惟各种技术在应用到产品上市前仍有制程开发、设备整合等技术问题待克服。
除此之外,制造成本仍是各技术最后能够胜出的重要因素。